mce.Rd
MC Experiments
mce(seed, niter, N, n, m, type, method)
seed | seed value for Monte Carlo Experiment |
---|---|
niter | number of draws in estimation |
N | group size (population) |
n | group size (sample) |
m | number of markets |
type | type of the MC Experiment. Either |
method | either |
# NOT RUN { ## 1. Set parameters mciter <- 2 #500 niter <- 10 #400000 nodes <- 4 ## 2. Setup parallel backend to use 4 processors library(foreach); library(doSNOW) cl <- makeCluster(4); registerDoSNOW(cl) ## 3. Define foreach loop function mce.add <- function(mciter, niter, N, n, m, type, method){ h <- foreach(i=1:mciter) %dopar% { library(matchingMarkets) mce(seed=i,niter, N, n, m, type, method) } do.call(rbind, h) } ## 4. Run siumlations: ## 4-a. Benchmark study exp.5.5.ols <- mce.add(mciter=mciter, niter=niter, N=5, n=5, m=40, type="group.members", method="outcome") exp.5.5.ntu <- mce.add(mciter=mciter, niter=niter, N=5, n=5, m=40, type="group.members", method="NTU") ## 4-b. Experiment 1: randomly sampled group members exp.6.5.ols <- mce.add(mciter=mciter, niter=niter, N=6, n=5, m=40, type="group.members", method="outcome") exp.6.5.ntu <- mce.add(mciter=mciter, niter=niter, N=6, n=5, m=40, type="group.members", method="NTU") ## 4-c. Experiment 2: randomly sampled counterfactual groups exp.6.6.ols <- mce.add(mciter=mciter, niter=niter, N=6, n=6, m=40, type="counterfactual.groups", method="outcome") exp.6.6.ntu <- mce.add(mciter=mciter, niter=niter, N=6, n=6, m=40, type="counterfactual.groups", method="NTU") ## 5. Stop parallel backend stopCluster(cl) # }